Evaluation of Detecting Malicious Nodes Using Bayesian Model in Wireless Intrusion Detection

نویسندگان

  • Yuxin Meng
  • Wenjuan Li
  • Lam-for Kwok
چکیده

Wireless sensor network (WSN) is vulnerable to a wide range of attacks due to its natural environment and inherent unreliable transmission. To protect its security, intrusion detection systems (IDSs) have been widely deployed in such a wireless environment. In addition, trust-based mechanism is a promising method in detecting insider attacks (e.g., malicious nodes) in a WSN. In this paper, we thus attempt to develop a trust-based intrusion detection mechanism by means of Bayesian model and evaluate it in the aspect of detecting malicious nodes in a WSN. This Bayesian model enables a hierarchical wireless sensor network to establish a map of trust values among different sensor nodes. The hierarchical structure can reduce network traffic caused by node-to-node communications. To evaluate the performance of the trust-based mechanism, we analyze the impact of a fixed and a dynamic trust threshold on identifying malicious nodes respectively and further conduct an evaluation in a wireless sensor environment. The experimental results indicate that the Bayesian model is encouraging in detecting malicious sensor nodes, and that the trust threshold in a wireless sensor network is more dynamic than that in a wired network.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrusion Detection in Wireless Sensor Networks using Genetic Algorithm

Wireless sensor networks, due to the characteristics of sensors such as wireless communication channels, the lack of infrastructure and targeted threats, are very vulnerable to the various attacks. Routing attacks on the networks, where a malicious node from sending data to the base station is perceived. In this article, a method that can be used to transfer the data securely to prevent attacks...

متن کامل

BeeID: intrusion detection in AODV-based MANETs using artificial Bee colony and negative selection algorithms

Mobile ad hoc networks (MANETs) are multi-hop wireless networks of mobile nodes constructed dynamically without the use of any fixed network infrastructure. Due to inherent characteristics of these networks, malicious nodes can easily disrupt the routing process. A traditional approach to detect such malicious network activities is to build a profile of the normal network traffic, and then iden...

متن کامل

Outlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis

Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...

متن کامل

Securing Cluster-heads in Wireless Sensor Networks by a Hybrid Intrusion Detection System Based on Data Mining

Cluster-based Wireless Sensor Network (CWSN) is a kind of WSNs that because of avoiding long distance communications, preserve the energy of nodes and so is attractive for related applications. The criticality of most applications of WSNs and also their unattended nature, makes sensor nodes often susceptible to many types of attacks. Based on this fact, it is clear that cluster heads (CHs) are ...

متن کامل

Adaptive security design with malicious node detection in cluster-based sensor networks

Distributed wireless sensor networks have problems on detecting and preventing malicious nodes, which always bring destructive threats and compromise multiple sensor nodes. Therefore, sensor networks need to support an authentication service for sensor identity and message transmission. Furthermore, intrusion detection and prevention schemes are always integrated in sensor security appliances s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013